

Predicting Building Energy Usage

w207 section 3 - C. Ilin Donahoe, Meier, Rosenberg https://github.com/bennnyys/w207-sec3-final-proj-DMR

Sam

What question are we working on? Why is it interesting?

- Can we predict energy usage from building characteristics?
 Energy use intensity site
- Current modeling requires many inputs, lots of expensive time, specific people, and computational power
 EnergyPlus, DOE2, eQUEST, etc.
- Reduced order modeling can more easily inform building system planning for new construction as well as retrofit decision making
- If we change one thing in a building, will it save energy?
- Target within 20% error

SAM

Question: Can we predict site energy usage from publically available building performance data?

EUI is the energy usage intensity of a building, simply you can think of it as the energy usage normalized by square footage.

This value is measured by a building operator, but is not necessarily shared with everyone who may be interested in it, and it is also useful to estimate EUI when considering energy retrofit work so that you can compare a new estimate with the measured value in the real world

Current modeling practices are time intensive, require specialized people, and is computationally taxing

If reduced order modeling can be used to predict EUI values, energy retrofit planning, utility strategy planning, building code production and commissioning, and other energy efficiency objectives would be significantly easier to complete.

Really, we want to know - if we change something in this building, how much might that impact energy usage. And hopefully, we can get that to within 20% accuracy which would be reasonable for actual implementation, although within 5% would be ideal

From research and subject matter expertise, we have identified a few features that would likely be very effective for predicting site EUI, unfortunately due to the proprietary nature of this dataset, we don't have access to all of these, but these data are commonly available in circumstances where access can be granted

Now on to Ben to discuss more about the dataset that we used for this project

Ben

What data are we using?

- U.S. Department of Energy Building Performance Database
 - Energy consumption and building characteristics of actual buildings from 16 states/municipalities in the U.S. (New York, San Francisco, Chicago, D.C., Seattle, Philadelphia, Austin, etc.)
- Up to 10 years of panel data per building
- Number of rows: 296,065
- Number of features: 33
- Main features
 - Site EUI (energy use intensity: kBtu per square feet, 91k NaN)
 - Also: year, electric EUI (95k NaN), fuel EUI (135k NaN), GHG emissions (152k NaN)
 - \circ Climate region (combination of temperature and humidity, 823 NaN)
 - Residential or Commercial (0 NaN)
 - Facility type (office, education, warehouse, industrial, lodging, etc., 156k NaN)
 - Floor Area (square feet, 0 NaN)
 - Year built (4,779 NaN)
 - Energy star rating (206k NaN)

Ben will present

- Data source
- Size
- Main features
- Summary stats
- •

State/Municipality Dataset Analysis

- Austin 8,390 (~1,600 rows with roof/ceiling and window glass data)
- Berkeley 414
- Boston 6,835 (~4,500 rows with energy star ratings)
- CA Building Energy Benchmarking Program 3,881
- CA Prop 39 K-12 Program 1,501
- Cambridge 4,122
- Chicago 11,937
- Fannie Mae 857
- Gainesville 154,528 (includes cooling, roof_ceiling type, but only 75k with site_eui)
- NYC Ordinance 54,298
- NY Residential 439
- Philadelphia 6,457
- San Francisco 9,647
- Seattle 17,002
- Syracuse 139
- D.C. 15,618

Ben will present

Fairness

- Location skew data collected at state/municipal level mostly large coastal cities
- Income skew buildings which receive energy audits may be skewed to affluent communities
 - Health and safety usually prioritized over energy efficiency in less affluent communities
- Consistency Commercial vs Residential
 - Commercial buildings have significant variation in construction compared to residential buildings

Ben

Descriptive Statistics: numeric

	year	floor_area	year_built	energy_star_rating	electric_eui	fuel_eui	site_eui	source_eui	ghg_emissions_int
count	296065.000000	2.960650e+05	291286.000000	89543.000000	200966.000000	160800.000000	204210.000000	196936.000000	143854.000000
mean	2013.978505	7.469098e+04	1971.887276	61.809511	29.602798	23.291331	63.231037	126.836547	4.937401
std	2.609692	1.796745e+05	28.742165	28.910037	28.690731	32.060086	54.413696	110.338840	4.202703
min	2010.000000	5.000000e+02	1649.000000	0.000000	0.000000	0.000000	1.001169	1.075772	0.000000
25%	2012.000000	1.635000e+03	1961.000000	40.000000	16.253904	8.182419	32.009412	72.190118	2.881654
50%	2014.000000	3.260000e+03	1978.000000	68.00000	23.384545	15.138294	50.051977	102.748173	4.026421
75%	2016.000000	8.036400e+04	1993.000000	86.00000	33.968446	26.041885	79.382514	146.732770	5.665176
max	2020.000000	6.385382e+06	2020.000000	100.000000	987.466930	936.379589	997.866120	3133.315574	109.708218

Ben will present EUI - measured in kBtu per square foot

Descriptive Statistics: categorical

CLIMATE - number of distinct vals:	12
2A Hot - Humid (Houston-TX)	162918
4A Mixed - Humid (Baltimore-MD)	76484
5A Cool - Humid (Chicago-IL)	23269
4C Mixed - Marine (Salem-OR)	17039
3C Warm - Marine (San Francisco-CA)	11171
3B Warm - Dry (El Paso-TX)	3957
NaN	823
6A Cold - Humid (Burlington-VT)	183
4B Mixed - Dry (Albuquerque-NM)	95
5B Cool - Dry (Boise-ID)	67
Name: climate, dtype: int64	
RUTIDING CLASS - number of distinct	vale: 2

Residential 223601 Commercial 72464 Name: building_class, dtype: int64

FACILITY_TYPE - number of distinct	vals: 8	2
NaN	156941	
Multifamily - Uncategorized	56268	
Office - Uncategorized	22030	
Education - Other classroom	8350	
2-4 Unit Building	5018	
5+ Unit Building	4508	
Lodging - Hotel	4327	
Retail - Uncategorized	3362	
Education - College or university	3118	
Commercial - Other	2586	
Name: facility_type, dtype: int64		

Ben will present

Descriptive Statistics: correlation matrix

- Most promising features
 - Features with low NaN counts
 - Turn categorical features into multi-hot
 - Calculate correlation between features

Ben will present

Ben will present - Heatmap Best predictors:

- Energy_star_rating
- Residential
- Floor_area
- Humid climates

Moving forward want to re-categorize the facility types (grocery, hospital, hotel, etc.) using kmeans

Ben will present - Heatmap Best predictors:

- Energy_star_rating
- Residential
- Floor_area
- Humid climates

Moving forward want to re-categorize the facility types (grocery, hospital, hotel, etc.) using kmeans

Ben will present - Heatmap Best predictors:

- Energy_star_rating
- Residential
- Floor_area
- Humid climates

Moving forward want to re-categorize the facility types (grocery, hospital, hotel, etc.) using kmeans

Prediction Algorithm

Linear Regression

• The feature we are trying to predict is a continuous, numerical variable which makes it a good candidate for predicting with a linear model.

Random Forest

• A random forest regression may be best able to handle the number of categorical and missing variables.

Feed Forward Neural Network

• Tried to improve on our initial linear model by building a feed forward neural network with embedding features to try and achieve any available marginal gains.

How will we evaluate our results?

- We chose to use Mean Absolute Error (MAE) as our evaluation metric.
- It is easy to interpret since it tells us how many energy intensity units our predictions were off by.
- MAE is less sensitive to outliers than Mean Squared Error and our data have observations with site EUI values multiple standard deviations above the mean.

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \widehat{y}_i|$$

CJ

Thoughts on loss function:

- Mean squared error penalizes outliers and we likely have some large ones since the distribution of site_eui values has a long tail (mean = 63.23, std = 54.42, min = 1.00, 75% = 79.38, max = 997.87).
- We may not want the few outliers with very high sight_eui to make our predictions for all the other buildings worse.
- Two possible alternatives
 - Use mean absolute error as the loss function since it doesn't penalize large errors
 - Use mean squared error, but winsorize the data by, for example, replacing the site_eui of the top 2% of buildings with the site_eui of the 98th percentile.

Baseline Model

MSE and MAE from the mean

MSE Baseline to Train: 1563.4135692561551 MSE Baseline to Test: 1349.2001965901652

MAE Baseline to Train: 29.96627005205943 MAE Baseline to Test: 28.480106853244518

Experiments: Linear Regression

Sam

Thanks! I took on the linear regression portion of this exercise, and historically in the literature and in industry, regression based models are the standard of practice for energy modeling. Explainability is key here, and we are very interested in the weights that come out of the model, so regression is a obvious first step into this type of work.

For these regression models we settled on Adam as our optimizer, and tuned learning rate and epochs as we went

We started with a baseline model - year built - which was relatively effective, with reasonable loss curves and MAE reaching close to our baseline mean model, but obviously year built is inadequate at describing a building, so we moved on to a more rich feature selection

Features include:

- Floor area
- Year of construction
- Year of data collection
- Climate zone one hot
- Building type one hot
- Window glass layers one hot
- Roof type one hot
- Cooling type one hot
- Heating type one hot
- Wall type one hot

Sam

Here you see our full list of features which we had access to and had populated values in the dataset. We are missing a few potentially important features, but given what was available this was a relatively comprehensive list. With this model, we are actually beating the MAE of our mean baseline model, and again the loss curve converges nicely. We still think there can be some improvement, so it is now time to normalize.

The normalized baseline regression again has a nice loss curve, and beats the non-normalized baseline, but we run into the same issue of year of construction not describing a building very well at all.

So, we normalized our full feature model, and here we begin to see pretty good performance. We are right around 21 for our training MAE and 26 for our validation MAE, our lowest yet, which although it isn't shown here, is getting closer to that 20% accuracy, although not quite hitting it yet.

Finally we tried a deep neural network with a normalization layer, a non-linear dense layer, and a linear output dense layer, but this model proved difficult in hyperparameter tuning, and didn't end up performing the best. I think this is a very promising method to look at in future studies when more building-descriptive features are available

So... we have 5 models, and it appears the normalized full-feature model is performing best. What do we do with this information?

Best Linear Model (Normalized Full-Feature) Weights

Final bias: 6.33
year 222.7343
floor_area 127.4397
year_built 175.1638
clim_2A Hot - Humid 0.3617
clim_3C Warm - Marine 0.0001
clim_5A Cool - Humid 0.0
clim_3B Warm - Dry 0.0184
clim_2B Hot - Dry 0.0415
clim_4C Mixed - Marine 0.361
clim_6B Cold - Dry 0.0002
clim_4B Mixed - Dry 0.0893
clim_5B Cool - Dry 0.1233
clim_4A Mixed - Humid 0.0
clim_6A Cold - Humid 0.0011
clim_3A Warm - Humid 0.0
BC_Residential 0.314
BC_Commercial 0.686
FT_Multifamily 0.0003
FT_Industrial 0.0073
FT_Office 0.0056
FT_Retail 0.0442
FT_Other 0.036
FT_Hotel 0.3233
FT_Restaurant 0.1804
FT_Grocery 0.0113
FT_Hospital 0.0024
FT_Data Center 0.037
FT Singlefamily 0.0027

Sam - These weights are the real "meat" of the project. With these weights, an interested party can adjust pieces of a building, like a more efficient window glass type, or heating system, and produce an estimated EUI to compare to the buildings current EUI - without having to deal with thousands of inputs and many hours spent in more complex simulations.

Linear Model Results - Test Set

Full featured normalized model has best performance and had most ideal loss plot

	Year_Built	Full_Feature	Year_Built_Norm	Full_Feature_Norm	DNN_Model
MSE	1617.91	1175.92	1477.95	803.35	965.60
MAE	31.59	25.49	29.90	19.12	20.75

Sam

Finally, here we can see the test data applied to our different linear models, and the one we thought was best seems to have performed best, and we're seeing the MAE under 20 which is actually getting pretty close to under 20% error, so that's good news for the linear model

Now let's have Ben take a look at random forests

Experiments: Random Forest

Ben

Thanks Sam, I'll now touch on our random forest regression using keras api in tensorflow. Given the large number of categorical and missing values in our dataset and small range of outcome values (site EUI ranges from 1 to 1,000), a random forest regression seemed like a worthwhile experiment.

Ben

The data cleaning and preprocessing was limited for this experiment. I dropped all rows with null values for site_eui and used only the most recent row for each building.

My first model had a small number of features and some consolidation of categorical variables. This resulted in a mean absolute error of 29 for training and 30 for validation, which seemed promising relative to our initial baseline linear regression model.

Random Forest

Model:	Train:	
<pre># Specify the model. model = tfdf.keras.RandomForestModel(task = tfdf.keras.Task.REGRESSION, temp directory= path + 'output ben/'.</pre>		mse: 540.2357 mae: 10.4744 mape: 32.1941 RMSE: 23.24297004985123
<pre>verbose = 2, allow_na_conditions=True,</pre>	Test:	
max_deptn=25, min_examples=3, num_trees=300, random_seed=3000, name='Random Forest Regressor'.		mse: 1218.7836 mae: 16.1808 mape: 47.1652 RMSE: 34.9110808961272
)		

Ben

- There were several hyperparameters to tune,
 - Number of trees: 100 to 500
 - Maximum tree depth, 10 to 30
 - Minimum examples per leaf: 10 to 1
- After some experimental tuning and evaluation against a validation dataset, the best model had:
 - 300 trees with a maximum tree depth of 25, with each leaf having a minimum of 3 buildings in it
 - Allowing null values to be their own category
 - Sampling with replacement
 - This resulted in a MAE of 10 for training
- Additional models attempted, but difference in MAE between the Train and Validation was more substantial
- The settings for the best model are shown above. Evaluating the model against our test dataset resulted in a MAE of 16.2

I'll now pass it on to CJ to discuss our Neural Network Model.

Experiments: Feed Forward Neural Network

FFNN

- Extract climate zone number and subtype as individual features
- Convert all features to embeddings
- Use Tensorflow Functional API with a simple model architecture of 2 fully connected layers with 32 nodes each.
- Exponential decay learning rate schedule

<pre>climate_zone_subtype = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name='climate_zone_subtype') cooling = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name='cooling')</pre>
facility_type = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name='facility_type')
<pre>floor_area = tf.keras.layers.Input(shape=(1,), dtype=tf.int64, name='floor_area')</pre>
<pre>postal_code = tf.keras.layers.Input(shape=(1,), dtype=tf.int64, name='postal_code')</pre>
window glass layers = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name='window glass layers')
year_built = tf.keras.layers.Input(shape=(1,), dtype=tf.int64, name='year_built')
Tensorflow categorical feature layers
building class binned = tf.keras.layers.StringLookup(vocabulary=['Commercial', 'Residential'])(building class)
climate_zone_number_binned = tf.keras.layers.IntegerLookup(vocabulary=[2, 3, 4, 5, 6])(climate_zone_number)
climate zone subtype binned = tf.keras.lavers.StringLookup(vocabulary=['A', 'B', 'C'])(climate zone subtype)
cooling_vocab = get_feature_vocab(df_train.cooling)
cooling_binned = tf.keras.layers.StringLookup(vocabulary=cooling_vocab)(cooling)
facility_type_vocab = get_feature_vocab(df_train.facility_type)
facility_type_binned = tf.keras.layers.StringLookup(vocabulary=facility_type_vocab)(facility_type)
floor_area_bins = list(np.percentile(df_train_int["floor_area"],[10,20,30,40,50,50,70,80,90]))
<pre>floor_area_binned = tf.keras.layers.Discretization(bin_boundaries=floor_area_bins)(floor_area)</pre>
postal_code_vocab = get_feature_vocab(df_train.postal_code)
<pre>postal_code_binned = tf.keras.layers.IntegerLookup(vocabulary=postal_code_vocab)(postal_code)</pre>
<pre>window_glass_layers_binned = tf.keras.layers.StringLookup(vocabulary=['Single-pane', 'Double-pane'])(window_glass_layers</pre>
<pre>year_built_vocab = get_teature_vocab(df_train.year_built)</pre>
year_built_binned = tt.Keras.layers.integerLookup(Vocabulary=year_built_vocab)(year_built)
A Transform school in a second
 Tensori due encedante tajens Indidina class andad - Et kanse Invars Embaddinaf
una ding class_enoru = (1.keras.cayers.chorus.jing)
limpt_onn = 3, output_onn = embed_onn, input_tength = i/(outroing_tass_onneo)
inste_cone_number_enned = (1.keros.tayer
limpt_oni = 0, output_oni = embed_oni, injot_tength = i/(ctimate_come_number_onimed)
input dig = subtype_ended = (incleases age school downing)
anjoc_cal = +; vocyoc_cal = choolean; anjoc_congen = r/ccance_conc_socypc_cannes;
input dia = infronting work) + 1 output dia = anhad dia input length = 11(conling hispad)
facility two ended = tf kers lawers Endeding
input dia = lan(facility two worsh) + 1 _ output dia = asked dia _ input length = 1)(facility two binoed)
fing area whether there's layers Enhedding
input dis = len(floor area bins)+1, output dis = embed dis, input length = 1)(floor area binsed)
nostal onde enhad - til keras lavors Enhadding/
input dig = len(nosta) code vocablet, output dig = embed dig, input length = 1)(nosta) code binned)
window glass layers embed = 1f.keras.layers.Embedding(
input dig = 3, output dig = exhed dig, input length = 1)(window glass layers bigned)
year built embed = tf.keras.layers.Embedding(

			FF	NN	I											
buildi	ing_class I	inputLayer	climate_zone_n	umber InputLayer	r climate_;	zone_subtype InputLay	r cooling 1	nputLayer	facility_type	InputLayer	floor_area	InputLayer	postal_co	de InputLayer	window_glass_layers InputLay	er year_built InputLayer
	Ļ			1								•		•	·	
string_1	lookup Sta	ringLookup	integer_lookuj	p IntegerLookup	string_loo	kup_1 StringLookup	string_lookup_2	StringLookup	string_lookup_3	StringLookup	discretization	Discretization	integer_looku	p_1 IntegerLookup	string_lookup_4 StringLooku	p integer_lookup_2 IntegerLookup
Г	4			1		1										
L	embedding	Embedding	embeddin	ig_1 Embedding	embe	edding_2 Embedding	embedding	3 Embedding	embedding_4	Embedding	embedding_5	Embedding	embedding_6	Embedding	embedding_7 Embedding	embedding_8 Embedding
									bb	Add						
									hidden 1	Dense						
									hidden1	Dense						
									hidden1 hidden2	Dense						
									hidden1 hidden2	Dense						
									hidden1 hidden2 SiteEUI	Dense						
									hidden1 hidden2 SiteEUI	Dense						
									hidden1 hidden2 SiteEUI	Dense Dense Dense						
									hidden1 hidden2 SiteEU1	Dense Dense Dense						
									hidden1 hidden2 SiteEUI	Dense						
									hidden1 hidden2	Dense						_
									hidden1 hidden2 SiteEUI	Dense Dense						

FFNN

It was very difficult to beat the performance of the full-feature, normalized linear regression model Extensive experimentation and hyperparameter tuning could not return a MAE below 20.

CJ

Experimenting with different NN architectures and numerous hyperparameters quickly became difficult to organize. Weights and Biases is a great tool that will keep track of everything for you so you don't have to worry about forgetting what learning rate was used on that one really good experiment from yesterday for example.

Conclusions

- More and better data is needed
- Need more representative buildings from the communities this model will be used in
- Residential and commercial buildings should potentially be separately modeled to reduce complexity and more effectively select features

Code and Contributions

Code and Contributions

Code

• GitHub Repo: <u>https://github.com/bennnyvs/w207-sec3-final-proj-DMR</u>

	Ben	Sam	CJ
Theoretical Research		Х	
Data cleaning	Х	Х	X
Data splitting	Х		
Hyperparameter tuning	Х	Х	X
Augmentations	(random forest)	(linear regression)	(FFNN)
Presentation Slides	X	X	X